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Abstract 

Compressive sensing is a new technique utilized for energy efficient data gathering in wireless sensor networks. It is 

characterized by its simple encoding and complex decoding. The strength of compressive sensing is its ability to reconstruct 

sparse or compressible signals from small number of measurements without requiring any apriori knowledge about the signal 

structure. Considering the fact that wireless sensor nodes are often deployed densely, the correlation among them can be 

utilized for further compression. By utilizing this spatial correlation, we propose a joint sparsity-based compressive sensing 

technique in this paper. Our approach employs Bayesian inference to build probabilistic model of the signals and thereafter 

applies belief propagation algorithm as a decoding method to recover the common sparse signal. The simulation results show 

significant gain in terms of signal reconstruction accuracy and energy consumption of our approach compared with existing 

approaches.   

Keywords: Wireless sensor networks; Compressive sensing; Sparsity; Belief propagation. 

1. Introduction  

Traditional data gathering approaches in wireless sensor networks (WSNs) transmit all measurements to the 

base station at the cost of energy and bandwidth. Considering the fact that transmitting all measurements in case 

of high sampling frequency is neither feasible in terms of resource consumption not useful in terms of data 

provision as environment does not change very frequently, in recent years adaptive sampling approaches have 

been utilized. Adaptive sampling approaches aim to only send those measurements, which indicate significant 

change in the environment. By doing so they aim to reduce communication and consequently to increase network 

lifetime. Some of these approaches also benefit from redundancy and spatial and temporal correlation of sensor 

nodes’ readings to reduce number of transmitted measurements and to lower down the communication cost even 

further. Another approach to tackle the problem of high communication cost to transfer sensor measurements 

from the WSN to a base station is data compression. However, this technique suffers from a restriction imposed 

by Niquist-Shannon theory, which states that in order to accurately recover the compressed signal, signal must be 

sampled with frequency (N) higher or equal to twice of its maximum frequency of signal [2]. In most cases these 

number of samples are still too high for limited resources of wireless sensor networks. In addition, compression 

techniques require identifying the location of large coefficients. To overcome these restrictions, compressive 

sensing has been put forward. 

    Compressive sensing (CS) is a concept coming from signal processing field. The strength of compressive 

sensing is its ability to reconstruct sparse or compressible signal from small number of measurements without 

requiring any a priori knowledge about the signal structure. CS is advantageous whenever signals are sparse in a 
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known basis, measurements (computation at the sensor end) are expensive and computations at the receiver end 

are cheap [3]. These characteristics completely match WSNs. Compared with data compression, applying CS in 

WSNs offers promising improvements as low power sensor nodes are not generally suitable for implementing 

encoding of data compression techniques [4]. CS has a simple encoding procedure to be executed by sensor nodes 

while a complex decoding procedure will be executed by the base station. The number of measurements required 

by compressive sensing is much lower than Nyquist-Shannon rate and depends on the sparsity level of the signal. 

In addition, there is no need to post-process the samples to reduce data size. These properties have made CS an 

energy efficient data gathering technique which has low processing and transmission costs [5].  

There are a number of prior works which investigate the effectiveness of  conventional CS techniques in 

WSNs.  Some of these works discuss on sensor readings projection techniques [6]. Authors in [7] build a data 

aggregation tree to acquire these projections while an adaptive compressive sensing technique proposed in [6]. 

Most of  these techniques consider only temporal correlation among individual signals measured by single sensor 

node. In addition, some others address scenarios where there is either temporal and spatial correlation among 

different signals as in a WSNs. The most well-known CS technique proposed for correlated signals is the 

distributed compressive sensing technique (DCS) [8]. DCS introduces a greedy algorithm based joint signal 

recovery method which reconstruct different signals acquired by different sensor nodes in a WSN where these 

signals are assumed to satisfy some joint sparsity models. DCS technique in [9]  employ Frechet mean of the 

signals to discover the common support of the sparse signal. Then it utilizes a new greedy algorithm, called 

precognition matching pursuit (PMP), to minimize the number of measurements. 

       In other hand, previous review articles in CS limit their base recovery algorithms to Linear programming and 

Greedy algorithm [10][11]. These techniques suffer from complexity, accuracy and speed problems. Bayesian CS 

(BCS) [12]  is a technique which utilizes statistical characterization of the signal to complement the conventional 

methods. It can provide better performance in terms of accurate data reconstruction or reduced number of 

measurements. However, there is a few works in WSNs area which benefits from this technique to outperform 

their performance [13][14]. TC-CSBP [14] is a belief propagation (BP) based BCS technique which employ 

temporal correlation among sensor node readings to reconstruct the signal. However, this technique ignore spatial 

correlation among sensor nodes’ readings. 

With the present paper, we provide spatial correlation based distributed BCS method which exploit belief 

propagation algorithm[15][16] to reconstruct the original signal. Considering the spatial correlation among sensor 

nodes, the common sparsity profile for all sensor nodes’ readings has been assumed. This common sparsity 

profile allows our approach to reconstruct the signal and support set together. To do so belief propagation (BP) 

technique is implemented on bipartite graph which utilize iterative message passing among the graph nodes to 

find the solution with high accuracy. These messages are the Gaussian probability density functions which 

provide posterior distribution of signals. 

        The rest of this paper is organized as follows. In Section 2 the fundamental of CS is introduced. Section 3 

and 4 presents system model and our approach respectively. Section 5 presents the simulation scenarios and 

evaluation results. Finally in section 6 we end up with some conclusion.  

2. Fundamental of compressive sensing  

2.1.  Compressive sensing theory 

Compressive sensing states that sparse or compressible signals can be accurately or approximately recovered 

from a number of linear projections [3][17]. Sparse signal is a signal which naturally exhibits sparsity while 

compressible signal can be well approximated with sparse representation through transforming to another space, 

where a small number of the coefficients represent most of the power of the signals [17]. In what follows 

mathematical description of CS as presented in [3][17] is given: 

Let us assume that a discrete signal      which is presented by     column vector, has sparse 

representation in some basis such as Fourier or Wavelet. Considering this sparsity concept, this signal can be 

expressed in term of the basis as 

  ∑  

 

   

                    ( ) 
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where   is an    orthonormal basis matrix   [          ]  ,   ,          is a    vector, and 

  [          ] is the     column vector of the coefficient sequence of   in Ψ domain.  

Signal   is compressible or sparse in   basis, if its coefficient vectors have a few large elements and many 

small or zero elements. In other words, most of the elements in   are zero. CS states that if signal   is K-sparse 

on   basis, it can be captured and recovered from M non-adaptive, linear measurements (     ) with a 

certain restriction. The sampled signal via CS is described as: 

                                           ( ) 

where   [          ] is     measurement matrix,   [          ] epresents a     sensing matrix 

and each               is a     vector. It must be mentioned that   is a random matrix which can be 

assumed as second basis. Each element   in measurement matrix is a product of vector   and a vector   from 

sensing matrix. We can substitute  with     then we can rewrite y as: 

                                  ( )   

where      is a     matrix.                                                

        CS demonstrates that sparse signal can be recovered from M measurements if it can satisfy restricted 

isometric property (RIP). RIP states that   and   must be incoherent, which means that the rows of   must not 

sparsely represent the columns of   (and vice versa).  Formally speaking, a matrix   of size M × N satisfies the 

RIP of order K if it can be the minimum number such that 

                                            (    )‖ ‖ 
  ‖  ‖ 

  (    )‖ ‖ 
              ( )                                                                

where    (   ) is a restricted isometric constant (RIC). Equation (4) must be hold for all a with ‖ ‖   , 

and ‖ ‖  is    norm which shows number of non-zero elements in  .    norm of vector a is defined as: 

‖ ‖ 
 
 ∑ |  |

 
 

   
                 ( )

RIP guarantees the exact recovery of x with high probability if        
 

 
             ( )  

    However, the recovery of the signal   form   is an NP hard problem but it can be achieved through 

optimization. To do so,   minimization is widely used for CS signal reconstruction, while   minimization is 

computationally intractable. We can recover the coefficients of sparse signal a by solving    norm minimization 

as follows: 

 ́    ́         ́          
    

 ‖ ‖                          ( ) 

2.2. Distributed compressive sensing 

Distributed compressive sensing is a technique which utilizes joint sparse signal recovery method to 

reconstruct the sparse signal. According to this technique, sparse representation of each signal consists of a 

common part and an innovative part [11][13]. In this model, all signals share a common sparse component while 

each individual signal contains a sparse innovation component.  

     
     

       ( ) 

where the   
  is common to the all of the    and its sparsity level is the minimum sparsity level of all signals in 

basis Ψ. The signals    
  are the unique portions of the    and have its sparsity level in the same basis. In this 

technique, recovery process focus on reconstructing the common part as much as possible in order to do 

reconstruction more precisely. When the proportion of common part is far more than individual part, the 

reconstruction error decreases. 

2.3. Belief propagation 

Belief Propagation (BP) is an iterative message passing algorithm which can calculate the marginal distribution 

or find the estimates such as MAP and MMSE in Bayesian networks and Markov random fields [15][ 16]. In the 

sparse signal recovery area, BP runs on factor graphs and considered as fast decoder in Bayesian compressive 

sensing frameworks. This factor graph is a bipartite graph which provides a graphical representation of  sparse 

signal recovery procedure. It consists of two disjoint nodes: variable nodes and connection (factor) nodes which 

are connected through undirected edges whenever there is a dependency between these nodes. According to BP, 
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these edges contains probability distribution functions on the variable nodes. There is only two direction for edges 

between variable and connection nodes [16] as: 

 Edges or messages from a variable node to the connection node  

This edges contain probability which is calculated by gathering the all incoming edges (excepts edges coming 

from node f ) and multiplying them, which is described as follows:  

    ( )  ∏     ( )       ( )

   ( )    

 

where      shows the edges from node v to node x and  ( ) denotes the neighbor nodes of x and  ( )     
denotes the neighbor nodes of x except for node C. As an example consider the Fig. 1 which shows the part of a 

factor graph. The message from the variable nodes X to the connection node     is given by: 

     ( )       ( )       ( )       ( )           ( )      (  ) 

Fig. 1. Message going from variable node to connection node 
 

Fig. 2. Message going from connection node to variable node 

 Edges from a connection  node to the variable  node 

This probability computed by obtaining the all incoming edges to the node f except the link from node x, 

multiplying them by f and finally finding the sum of all connected variable nodes except for the node x. In 

general, the edges going from the connection nodes to the variable node can be described as follows: 

    ( )  ∑  ( ( )) ∏     ( )

   ( )        

         (  ) 

where  ( ) is the all variable nodes connected to the f and ∑ is the sum over all connected variables except 

for x.      ( ) shows the edges going from variable node v to the connection node C. As an example consider 

the Fig. 2 which shows the part of a factor graph. The message from the connection nodes C to the variable 

node     is given by: 

     (  )  ∑  (               )       (  )  

               

     (  )   

          (  )           (    )                            (  )                    

3. System model 

We assume a network consisting of N static homogeneous wireless sensor nodes deployed densely. These 

nodes are in charge to accurately monitor the area in which they are deployed and to transmit their measurements 

to the sink node. The sink node is a high performance computation unit which has enough computational and 

power resources. Upon receiving data from sensor nodes, sink node must reconstruct and present the state of the 

environment with certain level of accuracy. Since sensor nodes have very limited resources, it is essential to 

gather and transfer as few data as possible. To do so, we employ compressive sensing technique to accurately 

reconstruct the state of the environment at the sink from as few as possible measurements. 

3.1. Signal model 

In order to model signal, we start with single sensor node. We consider the phenomenon to be monitored as a 

signal which is sampled by sensor nodes. Following formula (2), this phenomenon can be modeled as: 

           (  ) 
where    is the    measurement vector,    is the monitored signal coefficients or signal representation vector 

and    is a    random measurement matrix. We generate the elements of the sensing matrix using a random 

Bernouli distribution.  
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       We assume that a set of nodes denoted by P directly transfer their measurement vector    to the sink node. 

Therefore, sink node gather P measurement vectors. Since we have assumed a dense network, there is spatial 

correlation among sensor nodes. For all measurement vectors gathered at the sink node, we redefine 

measurements and signal representation as follows: 

       [
   
     

 

   
   
     

 
]    (  )                    [

   
     

 

   
   
     

 
]    (  ) 

where each column of these matrixes corresponds to measurements of one sensor node and its signal 

representation vectors. Each signal   consists of a small number of large elements and a large number of small 

elements. To distinguish between large and small elements, we define a status vector for each signal to show 

whether each coefficient of this signal is large or small.  

                    (  ) 
For the collection of P correlated signals gathered from P sensor nodes, we have state matrix as follow:  

       [
   
     

 

   
   
     

 
]     (  ) 

Each column of this matrix, shows the state variables for each sensor node and each state variable    
 is a binary 

variable (    
       ) which takes the value 0 when the corresponding element has a small magnitude, and value 

1 when the element has a large magnitude. 

   
  {

                
          

                 
            

    (  ) 

We utilize Gaussian distribution to associate the probability function for each coefficient of the signal. For 
   
   , we select a high variance zero mean Gaussian distribution and for    

 =0, we choose low variance zero 
mean Gaussian distribution. Therefore, the conditional probability of    on    

 can be represented as: 

 (   
 |   

 )  {
 (   

 |   
   )  (     

  ) 

 (   
 |   

   )  (     
  )  

(  ) 

We refer K and N as the signal sparsity level and the signal dimension respectively and  define support set of the 
signal as a set of  the positions where element of the signal are non-zero (large).     

                                (  ) 
Since we use distributed compressive sensing technique in our approach, we can change multiple measurement 
representation to the single measurement representation. According (8), the common sparisty part is same among 
all sensor nodes. Therefore, for this part, our multiple measurement vectors reduce to the single vector and we 
have a common measurement basis matrix and  a single state vector for all sensor nodes readings.  

          (  )                      (  ) 

3.2.  Signal recovery 

We consider sparse signal recovery as a Bayesian inference problem. Therefore the recovery of the signal can 

be achieved by maximizing the posterior probability (MAP) estimation as follows: 

 ̂   ̂        
   

 (   | )   (  ) 

This representation is the signal wise MAP estimator which we resort it to the components wise MAP estimator to 

be able to solve it through the sum-product algorithm as follows: 

 ̂        
   

∑ ( |   )  ( | )    (  ) 

Substituting f with probability function, we will have: 

 ̂        
   

∑ ( |   )  ( | )      (  ) 
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During recovery process, sink node follows two main goals: estimating the signal elements and detecting the 

support set of the signal. In order to detect the support set, sink node utilizes posterior distribution of    
  to find 

the following hypothesis test: 

 (   
   | )

 (   
   | )

     (  ) 

4. Our proposed distributed compressive sensing 

Given an already densely deployed WSN, sensor nodes regularly utilize compressive sensing technique to 

encode their readings and send it to the sink node. Upon receiving this information by the sink node, it decodes 

this information and reconstruct sensor nodes’ readings which will be explained in following sections. To do so, 

sink node needs to utilize recovery algorithm to build sensor nodes readings. Greedy and linear programming are 

the most common recovery algorithms utilized in WSNs[5][6]. Considering statistical characteristic of the signals, 

Bayesian based recovery approaches can complement conventional CS methods based on linear programming or 

greedy algorithms. The recovery method proposed here is a joint sparsity-based compressive sensing technique 

which consider this property. According to this method, sink node employs Bayesian inference to build 

probabilistic model of the signals and thereafter applies belief propagation as a decoding method to recover the 

sparse signal. We organize the network activities into several rounds. This means that the base station runs 

recovery algorithms at intervals of a round time unit. In what follows, we focus on the recovery algorithms the 

base station runs to reconstruct the sensor nodes measurements. 

Since our signal recovery algorithm utilizes joint sparse signal modeling, we will execute signal recovery 

process two times. First we will recover the common part of the signal and then individual parts will be 

reconstructed by taking the result of common recovery part results. 

4.1. Common Part Recovery 

  Proposed belief propagation based approach here, utilizes graphical representation to reconstruct the signal. This 

graphical representation is based on factor graph representation. Before describing graph representation, we need 

to find prior probability distribution of signal elements which is considered as an input to the factor graph. Each 

state variable is supposed as a Bernouli random variable with (    )    . Since signal is K sparse, we can 

assume β=K/N. Therefore, the prior probability distribution of each state variable is stated as follows: 

 (  )  {
  

 

 
                  

      
 

 
          

       (  ) 

Poposed factor graph presented in Fig. 3 is a bipartite graph   (       )cosisting of variable nodes VNs, 

connection nodes CNs and edges Es. As it mentioned in previous section, this factor graph representation allow us 

to find marginal probability distribution easily. To build this graph, we consider variable nodes and connection 

nodes and connect these node through the undirected edges when a connection node depends on a variable node. 

This representation allow us to calculate the marginal distribution functions by message passing between variable 

nodes and connection nodes.   

Our graph consists of two sub-graphs which have common nodes at VN2 which contain signal coefficients    }: 

The first sub-graph (sub-graph 1) computes the approximate posterior marginal distribution       Selecting 

appropriate probability distribution functions in this section, guarantees low sparsity solution. The second sub-

graph (sub-graph 2), provides approximation for the signal elements and estimates signal sparsity level. For the 

sub-graph 1, two variable nodes and one connection node has been defined: state variables     and signal 

coefficients     , are the variable nodes, while    is the connection node which provides a link between state 

variables   and signal elements  . 

By running belief propagation technique over this graph, the edges going from the variable node to the 

connection node provides belief about the current estimation of the signal coefficients. This belief will be used to 

update the probability about the signal sparsity level later. Therefore,    sends the distribution of each state 

variable  (  ) to    . Then     finds the Gaussian distribution of     by marginalizing signal elements based on 

state variables as follows: 

   (      )  (   |  )   (  )   
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Now it is necessary to find the edges going from the connection nodes to the variable node. According to (11), 

this edge can be calculated as follows: 

      ( )  ∑    ( (   )) ∏       ( )

   (   )    

     (  )

 ( )

 

where  (   )is the all variable nodes connected to the     and ∑ is the sum over all connected variables except 

for z.        ( )shows the edges going from variable node v to the connection node    .  

BP states that edges going from connection nodes to the signal elements nodes represent the belief about 

sparsity level. In fact, this edge carry two Gaussian distributions for zero and non-zero coefficient of signal. 

Therefore,      calculates the mixture Gaussian distribution of signal elements and send the parameters of this 

distribution to the    . Upon receiving these parameters,     calculates the prior probability distribution of     

as follows: 

 (   |  )     (   |    )  (   )   (   |    )      (     
  )  (   )   (     

  )
      (     

  )  (   )   (   )       (  )                        
where  ( ) is a Dirac distribution function and ∫  ( )     . 

Fig. 3. Factor graph representation  Fig. 4. Factor graph representation for individual part 

The second sub-graph located in the right side of this factor graph has two variable nodes and one connection 

node:     which is common with sub-graph 1, measurement variables     are the variable nodes while    is 

the connection node which provides a link between    and    . This sub-graph is in charge of calculating 

marginal distribution of signal elements. According to the formula (9), this distribution can be calculated by 

multiplying all incoming message to the variable nodes as follow: 

   ( )  ∏     ( )

   ( )

    (  ) 

The connection node     receives all these incoming edges from variable node    . For this connection node, 

the edge coming from     provides belief about the current state of signal elements. The incoming edges are the 

mixture of Gaussian densities. In fact, each member of    broadcasts its Gaussian density to all connection 

nodes involved in its measurement.    is a delta function node which provides relationship between signal 

observation variable node     and signal coefficient variable nodes    . This connection node is defined as 

follow: 

   ( 
     )   (    ∑      )        

 

     
    (  )  

For each variable node    , variable node     multiply delta function of connection node with other density 
functions received from variable nodes     to find the marginal distribution of each variable as follow: 

 (   | )      ( 
     )  ∏         (   )

   

   (  ) 

This marginal distribution will be calculated in each iteration of algorithm till it converges. Since the signal 

coefficients are independent, the joint distribution of the signal Z can be calculated as: 

 (  | )  ∏  (   | )

 

   

         (  ) 
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Therefore, each connection node gathers all incoming edges (Gaussian densities) which are simply the 

multiplication of all incoming links to the connection node.  

4.1.1. Support set detection 

The main goal of the second part of the graph is finding the support set of signal. To do so, the sink node 

requires finding the posterior distribution of state variables from sensor observations by calculating the following 

probability ratio: 

     {       
 (    | )

 (    | )
    }     (  ) 

Factorizing over     , this probability ratio becomes  

 (    | )

 (    | )
 
∫ (    |     ) (   | )

∫  (    |     ) (   | )
        (  ) 

This part of graph consists of one connection node    and two variable nodes    ,     . In each iteration of 

the algorithm, variable nodes       pass their marginal distribution values to the variable nodes      . As 

it mentioned in (30), variable node     calculates the Gaussian density of all incoming edges through multiplying 

these messages. Then, the link between variable node     and connection node     pass the parameters of this 

function to the connection node. These edges provide the second parameter of the aforementioned probability 

ratio. 

The first part of this ratio has been calculated through connection node    . Considering the Bayesian rules 

and the prior probability distribution, the connection node that links signal elements to the support set model of 

the signal is described as follow: 

   (|    |  )   (|    | | )  
 ( | |    |)   (|    |)

 ( )
   (  ) 

where |    | shows the cardinality of the recovered support detection set. Since over measurement ratio is more 

than sparity level K, we need to minimize this cardinality in our calculations. In (30), we already calculated 

 (|    | | ) but in this section there is   ( 
 
) possible sets which can play role of the support set, where K is 

the cardinality of support set. Since support set has K non-zero elements, there will be ( 
 
) possibility for selecting 

support set. We define                               as all possible support sets with K cardinality, while 

    ̅̅ ̅̅ ̅̅  is the all possible sets of non-support set. Considering these sets, in order to find   (  | |    |), we need to 

calculate two marginal distributions: One for the elements of each support set        (non-zero elements) and 

another for the elements of       ̅̅ ̅̅ ̅̅ ̅̅  (zero elements). Marginal distribution for the elements of        is the 

Gaussian distribution defined as  (   |    ) while for the elements of       ̅̅ ̅̅ ̅̅ ̅̅  this distribution is defined as 

 (   |    ). For each candidate support set, connection node     multiply the marginal distribution of these 

elements to find following probability: 

 (  | |      |)  ∏  (   |    )

        

 ∏  (   |    )

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

    (  ) 

 

    Finally for the all member of     , connection node     adds all these marginal distribution as follow: 

 

 (  | |    |)  ∑ (  | |      |)

(  )

   

    (  ) 

    Since all candidate support sets has same probability to act as a main support set, therefore,  (|    |    ⁄ . 

Finally,  (  ) can be calculated through (29). At the end, connection node     send  (  | |    |) and  (  | ) 

to the variable node SSet. According to(11), this variable node calculates the approximate posterior distribution  

as follow: 

                                                (|    || )  ∑ ∑  ∑ ( ( |    ||  )      
 ∏  (   

 
   | ))  (  )   

                                                                               

These probabilities exchange for a certain number of iterations. At the end, sink utilizes these marginal 

distributions to find the best support set according to (35). After finding support set, base station re-initializes the 

algorithm according to the support set. To do so, SSest reinitialize the prior distribution of signal coefficients 

through detected support set. Then,     and     iteratively exchange probability functions through     to find 

marginal posteriors which led to reconstruct the signal Z. 
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4.2. Individual part Recovery 

 After finding the common part, now sink node has to find the individual parts. To do so, it executes the 

previous model but only run the simplified version of belief propagation approach which is only for single sensor 

measurements. This simplified version has some input from the common parts which provide information about 

the common support set. The other details are as same as common recovery part. This simplified version is 

described in Fig. 4.  

Fig. 5  shows the pseudo-code of the proposed algorithm. 

Fig. 5. pseudo-code  
Fig. 6. Reconstruction error versus measurement ratio  

 

5. Simulation 

         In this section, we discuss the performance of our algorithm in terms of reconstruction error, support set 

detection accuracy and energy consumption. We consider a network of 10 sensor nodes arranged in a star 

topology. In this network, sink node is located in the center of area and each sensor node has direct access to the 

sink. We compare performance of our algorithm with Basis Pursuit [18] and Joint-BP[19].  

5.1. Reconstruction Error 

In order to measure the accuracy, we calculate minimum square error (MSE). Fig. 6 shows our reconstruction 

error as a function of measurement ratio 
 

 
 for all approaches. As it can clearly be seen, Joint BP and our approach 

outperforms Basis Pursuit reconstruction algorithm. For small to moderate measurement ratios, our approach 

clearly outperforms. The difference with the other two approaches becomes less significant as the measurement 

rate decreases.   

5.2. Support detection set accuracy 

      We define support error rate as     
∑ ((  ̂      ̂|       ) ||(  ̂  |       ))
 
   

 
 where   ̂ is the member of detected 

support set     ̂ and    is the member of original support set     . It measures the error rate between detected 

support set     ̂  and original support set     . Considering     , support detection accuracy parameter     
      and utilized to evaluate the accuracy of different algorithms. Fig. 7 depicts support detection accuracy 

level as a function of measurements ratio. Our approach provides the best accuracy compared with the other two 

approaches. There are two main reasons for this: firstly, our approach shares common sparse set among different 

sensor nodes and attempts to recover this set utilizing spatial correlation among sensor nodes. In addition, it 

utilizes statistical parameters to find accurate posterior distribution functions, which leads to accurate support set 

detection. 

5.3. Energy Consumption 

      In order to compare proposed methods in terms of energy consumption, we define relative energy 

consumption as     
∑   
 
   

∑   
 
   

 [6] which is the ratio of overall energy consumption among all nodes to run CS 

over the consumed energy for sending all measurements without applying CS. For same reconstruction error rate, 

energy consumption among different algorithms has been compared in Fig. 8. Our approach requires fewer 

measurements compared to others to obtain the same reconstruction error. In addition it has less data to transmit 

therefore it provides minimum energy consumption rate.  
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Fig. 7. Support detection accuracy versus measurement ratio 

 
Fig. 8. Relative energy consumption versus reconstruction error rate 

6. Conclusion 

In this paper a new data gathering approach proposed which collect sensing data from the environment through 

Joint sparsity based Bayesian compressive sensing taking data accuracy and energy consumption into account. In 

this Bayesian inference recovery framework, belief propagation algorithm has been employed to compress and 

reconstruct the spatially correlated  signals. This technique is implemented on bipartite graph which utilizes 

iterative message passing among the graph nodes to find the solution with high accuracy. Simulation results show 

that our algorithm outperforms Busis Pursuit and Joint-BP  in terms of data reconstruction accuracy and energy 

consumption.  
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